摘要
废旧箱纸板(OCC)造纸废水回用过程中面临着微细胶黏物沉积和因C
2020年我国纸浆消耗总量10200万t,其中,再生纤维浆5632万t,占纸浆消耗总量的55
未经适当处理的DCS排放到下游会引起严重的环境问
刘
将OCC裁剪为5 cm × 5 cm的片状,密封袋室温保存24 h以平衡水分。在浓度为10%、60℃和300 r/min的条件下,利用高浓碎浆机碎解OCC纸片20 min。随后,将纸浆浓度稀释至2%,置于60℃水浴中搅拌1 h后,使OCC纸浆在800 r/min搅拌下通过200目的动态滤水仪溶解分散,滤液即为模拟OCC造纸废水。
物理法处理:将OCC造纸废水通过300目的滤网抽滤,随后对其滤液进行分析与检测。
化学法处理:取200 mL OCC造纸废水于锥形瓶中,向其中添加3.0 g/L滑石粉,调节pH值为7并置于恒温水浴锅中反应,搅拌速度为2000 r/mi
生物酶法处理:取200 mL OCC造纸废水于锥形瓶中,向其中添加8 IU/g的脂肪酶(酶活20000 IU/g),反应条件及产物的分析与检测同化学处理方
电絮凝法处理:采用体积1 L的烧杯为电絮凝反应器。电极垂直平行放置于500 mL OCC造纸废水中,其阳极电极材料分别为纯铝、纯镁和纯铁,矩形电极的尺寸为1 mm × 20 mm × 200 mm。阳极和阴极通过铜线和直流电源进行连接。在200 r/min转速搅拌、室温条件下,探究不同工艺参数(金属阳极材料、电极间距(2.5、5和10 cm)、反应时间(15~90 min)和电流密度)对OCC造纸废水处理效果的影响。电絮凝处理前,分别用砂纸、蒸馏水及乙醇将电极清洗干净,晾干后使用。收集电絮凝处理后的水和絮凝体进行分析检测,实验重复3次取平均值。
将不同方法处理后的水样在2000 r/min下离心30 min,所得上清液即为DCS水样。
将得到的DCS水样在105℃下烘干至质量恒定,称量其质量即为处理后水样的DCS含量,随后将固形物置于马弗炉中灼烧至质量恒定,灼烧温度为(550±25)℃,利用浓硝酸对其灰分进行硝化处理后,采用ICP测定其C
OCC造纸废水的基本参数如
对比不同方法对OCC造纸废水的处理效果,结果如

图1 不同处理方法对水样浊度和DCS的影响
Fig. 1 Effect of different treatment methods on turbidity and DCS content of water samples
不同方法处理后,水样的COD去除效果如

图2 不同处理方法对水样COD(a)和C
Fig. 2 Effect of different treatment methods on COD (a) and C
化学、生物酶和物理法处理对水样中C
电絮凝法所用电极材料是有效处理OCC造纸废水的关键因素。因此,本研究考察阳极材料(铝、铁、镁)对处理OCC造纸废水的影响,结果如

图3 不同阳极材料对浊度和DCS含量的影响
Fig. 3 Effect of anode materials on turbidity and DCS content
水样的COD和C

图4 不同阳极材料对COD和C
Fig. 4 Effect of anode materials on the removal rates of COD and C
在2.2的基础上,以铝为最佳阳极材料,探究电流密度对水样浊度、COD和C

图5 电流密度对浊度、COD、C
Fig. 5 Effect of current densities on the removal rates of turbidity, COD, C
电极间的距离会影响诱导离子运动所需的能

图6 电极间距和反应时间对COD去除率的影响
Fig. 6 Effects of electrode distance and reaction time on COD removal rate
电极间距和反应时间对水样C

图7 电极间距和反应时间对C
Fig. 7 Effects of electrode distance and reaction time on C
当电极间距为5 cm、电流密度为115 A/

图8 反应时间对水样浊度去除率和DCS含量的影响
Fig. 8 Effect of electrocoagulation treatment time on turbidity removal rate and DCS content of water samples
综上,电絮凝处理的最佳工艺条件为:电流密度115 A/
OCC造纸废水沉降物(空白组)和在最佳条件下处理生成的絮凝体(絮凝体)的EDS和XPS光谱图如

图9 EDS谱图:(a)OCC造纸废水沉降物、(b)电絮凝最佳条件得到的絮凝体,XPS谱图:(c)Ca、(d)Al
Fig. 9 EDS analysis of (a) sediment of OCC papermaking wastewater and (b) electrocoagulation floc obtained under the optimal condition; high-resolution XPS spectra of (c) Ca and (d) Al
本研究对比评估了电絮凝法、物理法、化学法和生物酶法对模拟废旧箱板纸(OCC)造纸废水的处理效果;探究了阳极材料、电流密度、电极距离和反应时间对OCC造纸废水的处理效果并优化了电絮凝法处理的最佳工艺条件,主要结论如下。
3.1 电絮凝法可以同时去除OCC造纸废水中的胶黏物和C
3.2 电絮凝处理的最佳工艺条件为:铝为阳极材料,电流密度、反应时间和电极间距分别为115 A/
3.3 X射线光电子能谱(XPS)、场发射扫描电子显微镜(EDS)分析均证明,电絮凝处理可同时去除OCC废水中的DCS和C
参考文献
中国造纸协会.中国造纸工业2020年度报告[J]. 造纸信息, 2021(5): 6-16, 1. [百度学术]
China Paper Association. 2020 annual report of China's paper industry[J]. China Paper Newsletter, 2021(5): 6-16, 1. [百度学术]
何北海. 造纸工业清洁生产原理与技术[M]. 北京: 中国轻工业出版社, 2007. [百度学术]
HE B H. Principle and technology of cleaner production in paper industry[M]. Beijing: China Light Industry Press, 2007. [百度学术]
Blanco M A, Negro C, Gaspar I, et al. Slime problems in the paper and board industry[J]. Applied Microbiology and Biotechnology, 1996, 46(3): 203-208. [百度学术]
Blanco Suárez Á, Miranda Carreño R, Negro Álvarez C M, et al. Full characterization of stickies in a newsprint mill: The need for a complementary approach[J]. TAPPI Journal, 2007, 35(3): 295-302. [百度学术]
Garver T M, Xie T, Boegh K H. Variation of white water composition in a TMP and DIP newsprint paper machine[J]. TAPPI Journal, 1997, 80(8): 163-173. [百度学术]
梁继东, 贺延龄, 王国栋, 等. 废纸造纸封闭循环水中DCS的调查研究[J]. 中国造纸, 2011, 30(5): 6-10. [百度学术]
LIANG J D, HE Y L, WANG G D, et al. Investigation on DCS in closed circulating water of waste paper papermaking[J]. China Pulp & Paper, 2011, 30(5): 6-10. [百度学术]
张峰振, 杨 波, 张 鸿, 等. 电絮凝法进行废水处理的研究进展[J]. 工业水处理, 2012, 32(12): 11-16. [百度学术]
ZHANG F Z, YANG B, ZHANG H, et al. Research progress of electrocoagulation for wastewater treatment[J]. Industrial Water Treatment, 2012, 32(12): 11-16. [百度学术]
刘 艳. 铝钛电极电絮凝法处理造纸废水工艺及机理的研究[D]. 西安: 陕西科技大学, 2015. [百度学术]
LIU Y. Study on the process and mechanism of aluminum-titanium electrode electrocoagulation for papermaking wastewater treatment[D]. Xi'an: Shaanxi University of Science & Technology, 2015. [百度学术]
Begum A, Harikrishna S, Khan I. Analysis of Heavy metals in Water, Sediments and Fish samples of Madivala Lakes of Bangalore, Karnataka[J]. International Journal of Chem Tech Research, 2009, 1(2): 245-249. [百度学术]
李宗全. 二次纤维回用过程中胶粘物沉积机理及其控制的研究[D]. 广州: 华南理工大学, 2005. [百度学术]
LI Z Q. Study on the mechanism and control of adhesive deposition in the process of secondary fiber reuse[D]. Guangzhou: South China University of Technology, 2005. [百度学术]
Zhang X, Stebbing D W, Saddler J N, et al. Enzyme Treatments of the Dissolved and Colloidal Substances Present in Mill White Water and the Effects on the Resulting Paper Properties[J]. Journal of Wood Chemistry & Technology, 2000, 20(3): 321-335. [百度学术]
Nylund J, Lagus O, Eckerman C. Character and stability of colloidal substances in a mechanical pulp suspension[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1994, 85(1): 81-87. [百度学术]
Safari S, Aghdam M A, Kariminia H R. Electrocoagulation for COD and diesel removal from oily wastewater[J]. International Journal of Environmental Science and Technology, 2016, 13(1): 231-242. [百度学术]
Zongo I, Maiga A H, Wethe J, et al. Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: Compared variations of COD levels, turbidity and absorbance[J]. Journal of Hazardous Materials, 2009, 169(1-3): 70-76. [百度学术]
Hakizimana J N, Gourich B, Chafi M, et al. Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches[J]. Desalination, 2017, 404: 1-21. [百度学术]
Moreno-Casillas H A, Cocke D L, Gomes J G, et al. Electrocoagulation mechanism for COD removal[J]. Separation & Purification Technology, 2007, 56(2): 204-211. [百度学术]
Khemis M, Leclerc J P, Tanguy G L, et al. Treatment of industrial liquid wastes by electrocoagulation: Experimental investigations and an overall interpretation model[J]. Chemical Engineering Science, 2006, 61(11): 3602-3609. [百度学术]
Calvo L S, Leclerc J P, Tanguy G, et al. An electrocoagulation unit for the purification of soluble oil wastes of high COD[J]. Environmental Progress & Sustainable Energy, 2003, 22(1): 57-65. [百度学术]
Ghasem A, Reza R A, Mahmoud M K, et al. New batch electro-coagulation process for treatment and recovery of high organic load and low volume egg processing industry wastewater[J]. Process Safety and Environmental Protection, 2018, 119: 96-103. [百度学术]
Vasudevan S, Lakshmi J, Kamaraj R, et al. A critical study on the removal of copper by an electrochemically assisted coagulation: equilibrium, kinetics, and thermodynamics[J]. Asia-Pacific Journal of Chemical Engineering, 2013, 8(1): 162-171. [百度学术]
Devlin T R, Kowalski M S, Pagaduan E, et al. Electrocoagulation of wastewater using aluminum, iron, and magnesium electrodes[J]. Journal of Hazardous Materials, 2019, 368: 862-868. [百度学术]
Hafez O M, Shoeib M A, El-Khateeb M A, et al. Removal of scale forming species from cooling tower blowdown water by electrocoagulation using different electrodes[J]. Chemical Engineering Research & Design, 2018, 136: 347-357. [百度学术]