摘要
以TEMPO氧化法制备的纤维素纳米纤丝(CNF)为原料制备CNF气凝胶,随后采用Fe3O4纳米粒子和十六烷基三甲氧基硅烷(HDTMS)对其进行改性制得磁性疏水性CNF气凝胶,并对其疏水性能、磁性、吸附性及其他各项性能进行表征。结果表明,交联剂N,N-亚甲基双丙烯酰胺(MBA)可提高CNF之间的结合强度,使气凝胶结构更加稳定、不易被破坏。制备得到的气凝胶密度和孔隙率分别为0.015 g/c
由于海洋石油工业的快速发展,在石油开采和石油运输期间常发生溢油事
作为一种超轻且高度多孔的材料,气凝胶已被证明是一种非常有效的吸附
由于纳米纤维素气凝胶材料具有低密度、高孔隙率、高比表面积、可再生性和可生物降解性等优异特性,因此,基于CNF的气凝胶有望用作油吸附
CNF(直径3~20 nm、长度10~20 μm,根据TEMPO氧化法自行制得);无水乙醇、溴化钾、过硫酸铵购自天津国药化学试剂有限公司;N,N-亚甲基双丙烯酰胺(MBA)、十六烷基三甲氧基硅烷(HDTMS)、N,N-二甲基乙酰胺(DMAc)、二甲基甲酰胺(DMF)、正己烷、二甲基硅油、Fe3O4纳米粒子购自上海麦克林生化科技有限公司;无水亚硫酸钠、碳酸钠、次氯酸钠、盐酸、溴化钠、碳酸氢钠购自天津市江天化工技术有限公司;TEMPO试剂购自上海阿拉丁生化科技股份有限公司;大豆油和玉米油(食用油)购自某粮油公司;冷冻机油和真空泵油均为分析纯,购自江苏惠丰润滑材料股份有限公司;去离子水为实验室自制。
取20 g浓度为1%(w/V)的CNF悬浮液,在60℃的条件下,向其中依次加入0.1 g无水亚硫酸钠和0.04 g过硫酸铵(均为引发剂)并置于磁力搅拌器中进行搅拌,几分钟后加入1.2 g MBA进行交联反应。充分搅拌均匀后停止,将20 mg的Fe3O4纳米粒子分散在58%(V/V)的乙醇水溶液中,然后添加至CNF混合液中,超声分散30 min,然后搅拌30 min。采用盐酸调节混合物pH值为8,然后将2 mL HDTMS(乙醇溶液)添加至混合物中,并持续搅拌;搅拌均匀后停止,静置反应6 h。随后,将混合液置于-10℃的冰箱中进行预冷,然后在-60℃下真空冷冻干燥48 h后制得磁性疏水性CNF气凝胶;具体制备过程见

图1 磁性疏水性CNF气凝胶的制备示意图
Fig. 1 Schematic diagram of preparation of magnetic hydrophobic CNF aerogel
采用JSM-IT300LV型扫描电子显微镜(SEM)对CNF气凝胶的微观形貌进行分析;具体为,将样品进行切片然后用导电胶粘贴在样品台上,喷金处理后进行观察分析,加速电压为10 kV。采用650傅里叶变换型红外光谱(FT-IR)仪、KBr压片法对样品进行红外光谱分析,扫描波长范围为400~4000 c
忽略气凝胶材料内部空气密度的影响,其孔隙率可由气凝胶密度按
(1) |
式中,P为孔隙率,%;ρb为气凝胶的密度,以质量与体积的比值得到,g/c
将质量为m1的磁性疏水性CNF气凝胶浸入到有机溶剂中,静置一定时间,待达到吸附饱和后取出,称取其质量为m2。CNF气凝胶的吸油量由
(2) |
式中,W为吸油量,%;m1为吸油前磁性疏水性CNF气凝胶的质量,g;m2为吸油达到平衡后磁性疏水性CNF气凝胶的质量,g。

图2 磁性疏水性CNF气凝胶的宏观形貌图(a)和SEM图(b、c)
Fig. 2 The macroscopic image (a) and SEM images (b, c) of the magnetic hydrophobic CNF aerogel

图3 未改性CNF气凝胶(a)和改性CNF气凝胶(b)的FT-IR谱图
Fig. 3 FT-IR spectra of (a) unmodified CNF and (b) modified CNF aerogels
经计算得到磁性疏水性CNF气凝胶的密度为0.015 g/c

图4 磁性疏水性CNF气凝胶的N2吸附-脱附等温线和孔径分析
Fig. 4 N2 adsorption-desorption isotherm and pore size analysis of magnetic hydrophobic CNF aerogel

图5 磁性疏水性CNF气凝胶的表面(a)、内部(b)及10天后(c)的静态水接触角
Fig. 5 Water contact angles of surface (a), interior (b) and after ten days (c) of magnetic hydrophobic CNF aerogel

图6 磁性疏水性CNF气凝胶的VSM测试图
Fig. 6 The VSM diagram of magnetic hydrophobic CNF aerogel

图7 磁性疏水性CNF气凝胶对不同有机溶剂的吸附能力
Fig. 7 Absorption capacities of magnetic hydrophobic CNF aerogels for different organic solvents
以TEMPO氧化法制备的纤维素纳米纤丝(CNF)为原料、N,N-亚甲基双丙烯酰胺(MBA)为交联剂、十六烷基三甲氧基硅烷(HDTMS)为疏水改性剂并添加Fe3O4纳米粒子制备磁性疏水性CNF气凝胶。结果表明,所制备的气凝胶密度为0.015 g/c
参考文献
SHAFIR S, VAN RIJN J, RINKEVICH B. Short and long term toxicity of crude oil and oil dispersants to two representative coral species[J]. Environmental Science Technology, 2007, 41(15): 5571-5574. [百度学术]
WANG J, GENG G, LIU X, et al. Magnetically superhydrophobic kapok fiber for selective sorption and continuous separation of oil from water[J]. Chemical Engineering Research Design, 2016, 115: 122-130. [百度学术]
KARAKASI O K, MOUTSATSOU A. Surface modification of high calcium fly ash for its application in oil spill clean-up[J]. Fuel, 2010, 89(12): 3966-3970. [百度学术]
BAYAT A, AGHAMIRI S F, MOHEB A, et al. Oil spill cleanup from sea water by sorbent materials[J]. Chemical Engineering Technology, 2005, 28(12): 1525-1528. [百度学术]
LIN J, SHANG Y, DING B, et al. Nanoporous polystyrene fibers for oil spill cleanup[J]. Marine Pollution Bulletin, 2012, 64(2): 347-352. [百度学术]
WAHI R, CHUAH L A, CHOONG T S Y, et al. Oil removal from aqueous state by natural fibrous sorbent: an overview[J]. Separation and Purification Technology, 2013, 113(24): 51-63. [百度学术]
LEE J H, KIM D H, KIM Y D. High-performance,recyclable and superhydrophobic oil absorbents consisting of cotton with a polydimethylsiloxane shell[J]. Journal of Industrial and Engineering Chemistry, 2016, 35(25): 140-145. [百度学术]
陶丹丹, 白绘宇, 刘石林, 等. 纤维素气凝胶材料的研究进展[J]. 纤维素科学与技术, 2011, 19(2): 64-75. [百度学术]
TAO D D, BAI H Y, LIU S L, et al. Research Progress in the Cellulose Based Aerogels Materials[J]. Journal of Cellulose Science and Technology, 2011, 19(2): 64-75. [百度学术]
彭长鑫, 锁 浩, 崔 升, 等. 纤维素气凝胶的制备与应用进展[J]. 现代化工, 2019, 39(7): 56-60. [百度学术]
PENG C X, SUO H, CUI S, et al. Progress in preparation and application of cellulose aerogel material[J]. Modern Chemical Industry, 2019, 39(7): 56-60. [百度学术]
马慕天, 陈永利, 李 沅, 等. 碱脲体系中纤维素基气凝胶的制备[J]. 辽宁化工, 2019, 48(8): 743-745. [百度学术]
MA M T, CHEN Y L, LI Y, et al. Preparation of Cellulose Aerogel in Alkali/Urea Aqueous Solution[J]. Liaoning Chemical Industry, 2019, 48(8): 743-745. [百度学术]
DEOLIVEIRA P B, GODINHO M, ZATTERA A J, et al. Oils sorption on hydrophobic nanocellulose aerogel obtained from the wood furniture industry waste[J]. Cellulose, 2018, 25(5): 3105-3119. [百度学术]
徐 荧, 李 曜, 赵培涛, 等. 纳米纤维素基导热复合材料的研究进展[J]. 中国造纸学报, 2020, 35(4): 1-8. [百度学术]
XU Y, LI Y, ZHAO P T, et al. Research and Development of Nanocellulose-based Thermal Conductive Composites[J]. Transactions of China Pulp and Paper, 2020, 35(4): 1-8. [百度学术]
CHEN C, ZHANG Y, LI Y, et al. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance[J]. Energy & Environmental Science, 2017, 10(2): 538-545. [百度学术]
SONG J, CHEN C, ZHU S, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature, 2018, 554(7691): 224-228. [百度学术]