摘要
随着包装行业对涂料阻隔性能及绿色环保可持续性要求的提高,利用水性阻隔涂料赋予包装材料高阻隔性能已成为行业研究热点之一。本文综述了近年来用于改善包装材料阻氧阻湿性能的水性涂料的研究进展,重点介绍了具有可控流变性和良好成膜性的多糖类和蛋白质类生物基水性阻隔涂料,以及聚乙烯醇、聚丙烯酸乳液和聚偏氯乙烯乳液等非生物基水性阻隔涂料。水性阻隔涂料具有环保安全、无溶剂残留的优点,符合可持续发展的绿色理念,在阻隔包装材料方面具有巨大的应用潜力。
随着经济发展水平的不断提高,包装行业快速发展。塑料和纸作为包装行业主要的封装用材料,其阻隔性能和可持续性要求不断提

图1 包装材料阻隔机理及其阻隔性能优化措
Fig. 1 Schematic diagram of barrier mechanism of packaging materials and its optimization measure of barrier performanc
小分子在涂层表面的吸附及扩散与涂层的组成、结构及表面状态密切相关。亲水性涂层表面有利于水分子和水蒸气的吸附,而疏松多孔的涂层表面则有利于气体分子的吸附。水蒸气在通过涂层时,水分子可与涂层的组分发生化学反应并形成新组分,增加水分子的扩散阻力,从而降低WVT
因此,由小分子在包装材料中的迁移过程(
可作为水性阻隔涂料组分并形成阻隔涂层的生物基可降解聚合物有淀粉、壳聚糖、海藻酸钠、纤维素及其衍生物等多糖类聚合
纳米纤维素、淀粉、壳聚糖等多糖类聚合物的水分散液具有可控的流变性能和良好的成膜性,可用于表面涂布并赋予基材阻隔性能。以纸张为涂布基材时,多糖类聚合物可与纸张纤维充分结合,并在其表面形成结构致密的涂层,进而增强纸基材料的阻隔性能。
纳米纤维素具有良好的阻隔性能,特别是阻氧性能,这归因于原纤化纳米纤维素的高比表面积和高长径比,使其更易形成致密的小孔径网络结构。这种网络结构增加了纳米纤维素材料的密度,从根本上降低了小分子的渗透
除单独涂布外,纳米纤维素还可与其他涂料复合涂布使用。虫胶具有疏水性、可生物降解性和可再生性,将其与纳米纤维素复合涂布,可提高材料整体的阻氧阻湿性能。Hult
淀粉作为天然高分子聚合物之一,具有来源广泛、价格低廉、绿色环保、易于改性和加工方便等优点。与纳米纤维素相似,淀粉用作阻隔涂料时同样具有良好的成膜性及优异的阻隔性能。然而,不同于纳米纤维素,淀粉自身并不能形成致密的涂层结构,单一淀粉涂层不具备阻氧阻湿性能,但可通过添加增塑剂、进行改性、与其他组分复配等方式赋予其有效的阻氧阻湿性
壳聚糖来源于海洋甲壳类动物的壳,是甲壳素脱乙酰后的衍生物,是一种以葡萄糖胺和N-乙酰-D-葡萄糖胺为单元的线性氨基多糖。因具有来源广泛、生物相容性好、可生物降解、抗菌及易成膜等优点,壳聚糖已成为制备食品包装材料的优良原
蛋白质是一类营养丰富且可再生的天然高分子物质,其在溶液中较为稳定且易于交联,具有良好的机械性能和阻隔性能。蛋白质的阻隔性能很大程度上取决于其在溶液中的溶解度、成膜时的分子均匀性及分子间作用
玉米醇溶蛋白因含有大量非极性氨基酸而具有良好的疏水性和成膜性,经过交联复配改性后,可用作阻氧阻湿涂料组分,进一步提高材料的阻隔性
明胶是胶原蛋白部分降解的产物,由于水解程度的不同,明胶的相对分子质量不同,基本分布在6.5×1
非生物基水性阻隔涂料主要是指来源于石化产品的高分子聚合物,其因含有易在分子链间形成强相互作用的官能团而展现出优异的阻隔性能,如羟基、卤素、氰基、酯基及酰胺基
水性PVA涂料作为一种新型环保阻隔涂料,具有成膜性好、透明、阻氧性能优异等特性,但其遇水易溶胀、耐水性差,使得PVA涂层在高湿度环境下阻氧性能显著下降,不具备水蒸气阻隔性
Lim
综上,对PVA进行交联改性或在PVA涂料中引入纳米材料,均能在一定程度上改善PVA涂层的阻氧阻湿性能,但作用效果存在明显差异。通过优化涂料配方及合成工艺,能够大幅提升PVA涂层的阻氧性能,但对其阻湿性能的改善效果有限,与高阻湿要求仍存在差距。
PAA乳液涂料是一种由丙烯酸类及甲基丙烯酸类单体乳液聚合所得的乳状液,其干燥后生成的PAA树脂具有柔韧性强、光学透明性高等优点,可应用于高阻隔性能要求的柔性透明塑料软包装材
Liu
为克服LbL自组装沉积技术难以大规模工业化的缺点,Li
综上,PAA乳液是一种绿色环保、成膜性好的高分子聚合物,将其用作阻隔涂料可有效改善基材的阻氧性能,但由于PAA自身具有亲水性,其对基材的阻湿性能改善效果有限。
PVDC具有分子间作用力强、结晶度高等特点,由于PVDC分子结构含有疏水性的氯原子而不易形成氢键,水分子很难在PVDC分子间移动,因此PVDC涂层具有良好的阻氧阻湿性能,且不易受相对湿度条件影响。PVDC按合成工艺和用途可分为PVDC树脂和PVDC乳液2类。PVDC乳液可用作水溶性高分子涂料,通过将其在基材表面涂布成膜,赋予基材阻氧阻湿性能。与PVDC树脂相比,PVDC乳液使用方便快捷,可直接涂布在纸和纸板、塑料等基材上,解决了偏氯乙烯难以加工成形的问题。
孟庆文
综上,PVDC乳液用作包装用阻隔涂料时,成膜过程无需添加额外助剂,且仅需涂层厚度2~3 μm即可与厚度25 μm吹塑薄膜的阻隔性能相当,阻氧阻湿性能良好且不易受湿度变化的干扰。因此,PVDC乳液在提升基材的阻氧阻湿性能方面具有巨大的应用潜
水性阻隔涂料具备环保安全的优点,符合可持续发展的绿色理念,正不断向阻隔包装材料领域,特别是纸质包装材料进行推广应用。
4.1 多糖类、蛋白质类生物基可降解水性阻隔涂料的成膜性好,可赋予基材良好的阻氧性能;但受限于其天然的亲水性,随着相对湿度增加,涂层的阻氧性能会急剧下降,出现阻湿性能不足的问题。通过对生物基水性阻隔涂料进行交联改性或添加高长径比纳米填料,可有效改善涂层的阻氧阻湿性能;其中,对阻氧性能的提升效果显著,但对阻湿性能的改善效果有限。
4.2 聚乙烯醇(PVA)、聚丙烯酸(PAA)乳液及聚偏二氯乙烯(PVDC)乳液等非生物基水性阻隔涂料,已在纸张和塑料阻隔涂层上实现规模化应用。经涂布交联改性PVA或PAA涂料后,基材均可获得良好的阻氧性能,但与高阻湿要求仍存在差距;PVDC乳液因自身含有疏水性氯原子,用作阻隔涂料时可赋予基材良好的阻氧阻湿性能,但应关注其燃烧后产生的致癌物二噁英。
参考文献
贾海慧, 李冬梅, 王宇峰, 等. 我国绿色包装材料发展方向[J]. 中国科技信息, 2021(20): 113-114. [百度学术]
JIA H H, LI D M, WANG Y F, et al. Development Direction of Green Packaging Materials in China[J]. China Science and Technology Information, 2021(20): 113-114. [百度学术]
孔子文, 单 宁, 伏 阳, 等. 聚合物及其纳米复合阻隔涂层研究进展[J]. 塑料包装, 2017, 27(4): 16-20. [百度学术]
KONG Z W, SHAN N, FU Y, et al. The Research Development of Polymer and Its Nanocomposite Barrier Coating[J]. Plastics Packaging, 2017, 27(4): 16-20. [百度学术]
李晓燕, 丁富传, 张和强, 等. 改性MMT/VAE纳米复合水性阻隔涂层的制备及性能研究[J]. 中国塑料, 2019, 33(10): 1-5, 10. [百度学术]
LI X Y , DING F C, ZHANG H Q, et al. Study on Preparation and Properties of VAE/MMT[J]. China Plastics, 2019, 33(10): 1-5, 10. [百度学术]
陆 俊, 疏 毅, 周忠武, 等. 塑料包装用水性聚合物/纳米复合阻隔涂层研究进展[J]. 塑料包装, 2019, 29(5): 36-40. [百度学术]
LU J, SHU Y, ZHOU Z W, et al. Research Progress of Waterborne Polymer/Nanocomposite Barrier Coatings for Plastic Packaging[J]. Plastics Packaging, 2019, 29(5): 36-40. [百度学术]
SU Y Q, YANG B, LIU J G, et al. Prospects for Replacement of Some Plastics in Packaging with Lignocellulose Materials: A Brief Review[J]. BioResources, 2018, 13(2): 4550-4576. [百度学术]
李红元, 童晓霞, 石淑先. 涂布型高阻隔薄膜[M]. 北京: 化学工业出版社, 2016. [百度学术]
LI H Y, TONG X X, SHI S X. Coating Type High Barrier Film[M]. Beijing: Chemical Industry Press, 2016. [百度学术]
LI Z, RABNAWAZ M. Oil- and Water- Resistant Coatings for Porous Cellulosic Substrates[J]. ACS Applied Polymer Materials, 2019, 1(1): 103-111. [百度学术]
KHAN F, RABNAWAZ M, LI Z, et al. A Simple Design for Durable and Clear Self-cleaning Coatings[J]. ACS Applied Polymer Materials, 2019, 1(10): 2659-2667. [百度学术]
RAMOS O L, FERNANDES J C, SILVA S I, et al. Edible Films and Coatings from Whey Proteins: A Review on Formulation, and on Mechanical and Bioactive Properties[J]. Critical Reviews in Food Science & Nutrition, 2012, 52(6): 533. [百度学术]
ESPITIA P J P, DU W X, AVENA-BUSTILLOS R D J, et al. Edible Films from Pectin: Physical-mechanical and Antimicrobial Properties―A Review[J]. Food Hydrocolloids, 2014, 35(3): 287-296. [百度学术]
SPENCE K L, VENDITTI R A, ROJAS O J, et al. The Effect of Chemical Composition on Microfibrillar Cellulose Films from Wood Pulps: Water Interactions and Physical Properties for Packaging Applications[J]. Cellulose, 2010, 17(4): 835-848. . [百度学术]
SYVERUD K, STENIUS P. Strength and Barrier Properties of MFC Films[J]. Cellulose, 2009, 16(1): 75-85. [百度学术]
KOPPOLU R, LAHTI J, ABITBOL T, et al. Continuous Processing of Nanocellulose and Polylactic Acid into Multilayer Barrier Coatings[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11920-11927. [百度学术]
HULT E L, IOTTI M, LENE M. Efficient Approach to High Barrier Packaging Using Microfibrillar Cellulose and Shellac[J]. Cellulose, 2010. 17(3): 575-586. [百度学术]
LI H, QI Y, ZHAO Y, et al. Starch and Its Derivatives for Paper Coatings: A Review[J]. Progress in Organic Coatings, 2019, 135: 213-227. [百度学术]
VERSINO F, LOPEZ O V, GARCIA M A, et al. Starch‐based Films and Food Coatings: An Overview[J]. Starch‐Stärke, 2016, 68(11-12): 1026-1037. [百度学术]
CHI K, WANG H, CATCHMARK J M. Sustainable Starch-based Barrier Coatings for Packaging Applications[J]. Food Hydrocolloids, DOI: 10.1016/j.foodhyd.2020.105696. [百度学术]
MENZEL C, KOCH K. Impact of the Coating Process on the Molecular Structure of Starch-based Barrier Coatings[J]. Journal of Applied Polymer Science, DOI: 10.1002/app.41190. [百度学术]
BREEN C, CLEGG F, THOMPSON S, et al. Exploring the Interactions Between Starches, Bentonites and Plasticizers in Sustainable Barrier Coatings for Paper and Board[J]. Applied Clay Science, DOI: 10.1016/j.clay.2019.105272. [百度学术]
CHRISTOPHLIEMK H, JOHANSSON C, ULLSTEN H, et al. Oxygen and Water Vapor Transmission Rates of Starch-poly(Vinyl Alcohol) Barrier Coatings for Flexible Packaging Paper[J]. Progress in Organic Coatings, 2017, 113: 218-224 [百度学术]
薛添仁, 曹省慧, 王 硕, 等. 壳聚糖基生物可降解食品包装材料的研究进展[J]. 化工新型材料, 2023, 51(6): 231-234,240. [百度学术]
XUE T R, CAO S H, WANG S, et al. Research Progress on Biogradable Food Packaging Materials Based on Chitosan[J]. New Chemical Materials, 2023, 51(6): 231-234,240. [百度学术]
YU Z, JI Y, BOURG V, et al. Chitin- and Cellulose-based Sustainable Barrier Materials: A Review[J]. Emergent Materials, 2020, 3(6): 919-936. [百度学术]
NGUYEN H L, TRAN T H, HAO L T, et al. Biorenewable, Transparent, and Oxygen/Moisture Barrier Nanocellulose/Nanochitin-based Coating on Polypropylene for Food Packaging Applications[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2021.118421. [百度学术]
JI Y, WATERS S, LIM E, et al. Minimizing Oxygen Permeability in Chitin/Cellulose Nanomaterial Coatings by Tuning Chitin Deacetylation[J]. ACS Sustainable Chemistry & Engineering, 2021, 10(1): 124-133. [百度学术]
刘玉莎, 陈 港. 壳聚糖应用于纸张阻隔性涂布的研究[J]. 中国造纸, 2011, 30(11): 1-6. [百度学术]
LIU Y S, CHEN G. Study on the Application of Chitosan in Paper Barrier Coating[J]. China Pulp & Paper, 2011, 30(11): 1-6. [百度学术]
李新欣, 陈复生, 张 强, 等. 蛋白质基可食用膜的研究进展[J]. 食品工业, 2021, 42(6): 386-389. [百度学术]
LI X X, CHEN F S, ZHANG Q, et al. Research Progress of Protein-based Edible Films[J].The Food Industry, 2021, 42(6): 386-389. [百度学术]
HASSAN B, CHATHA S A S, HUSSAIN A I, et al. Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review[J]. International Journal of Biological Macromolecules, 2018, 109: 1095-1107. [百度学术]
PUREWAL S S, KAUR A, BANGAR S P, et al. Protein-based Films and Coatings: An Innovative Approach[J]. Coatings, DOI: 10.3390/coatings14010032. [百度学术]
李双健. 负载玉米醇溶蛋白基纳米颗粒的壳聚糖膜制备及其在沙糖桔保鲜中的应用[D].上海: 上海海洋大学, 2023. [百度学术]
LI S J. Preparation of Chitosan Comosite Film Loaded with Zein Based Nanoparticles and Its Application in the Preservation of Sugar Oranges[D]. Shanghai: Shanghai Ocean University, 2023. [百度学术]
CHEN H, WANG J, CHENG Y, et al. Application of Protein-based Films and Coatings for Food Packaging: A Review[J]. Polymers, DOI: 10.3390/polym11122039. [百度学术]
SHENDURSE A, GOPIKRISHNA G, PATEL A C, et al. Milk Protein Based Edible Films and Coatings—Preparation, Properties and Food Applications[J]. J. Nutr. Health Food Eng, 2018, 8(2): 219-226. [百度学术]
石伟健. 壳聚糖/明胶基复合材料构建与性质研究[D]. 广州: 华南理工大学, 2015. [百度学术]
SHI W J. Preparation and Charaterization of Gelation and Chitosan Composite Films[D]. Guangzhou: South China University of Technology, 2015. [百度学术]
朱清梅, 陈秀琼, 李东泽, 等. 食品软包装用透明高阻隔涂料: PVA涂料研究进展[J]. 精细化工 ,2022, 39(9): 1729-1738,1746. [百度学术]
ZHU Q M, CHEN X Q, LI D Z, et al. Research Progress on Transparent and High Barrier PVA Coatings for Flexible Food Packaging[J]. Fine Chemicals, 2022, 39(9): 1729-1738,1746. [百度学术]
LIM M, KWON H, KIM D, et al. Highly-enhanced Water Resistant and Oxygen Barrier Properties of Cross-linked Poly(Vinyl Alcohol) Hybrid Films for Packaging Applications[J]. Progress in Organic Coatings, 2015, 85: 68-75. [百度学术]
刘 瑶. 纳米SiO2、TiO2交联改性PVA及对低盐咸鸭蛋涂膜保鲜效果的研究[D]. 南京: 南京农业大学, 2014. [百度学术]
LIU Y. Research of Nano SiO2, TiO2 Modified Crosslinked PVA-based Film Material and Its Influence on Fresh Preservation Effect of Low-salted Duck Eggs[D]. Nanjing: Nanjing Agricultural University, 2014. [百度学术]
何宏伟, 李 蔚, 陈 挺, 等. 硬脂酸改性聚乙烯醇/纳米纤维素复合阻隔涂料的制备[J]. 包装工程, 2023, 44(1): 45-51. [百度学术]
HE H W, LI W, CHEN T, et al. Preparation of Stearic Acid Modified Polyvinyl Alcohol/Nanocellulose Composite Barrier Coatings[J]. Packaging Engineering, 2023, 44(1): 45-51. [百度学术]
YUE S, WANG S, HANA D, et al. Polyvinyl Alcohol/Montmorillonite Nanocomposite Coated Biodegradable Films with Outstanding Barrier Properties[J]. ES Materials & Manufacturing, DOI: 10.30919/esmm5f834. [百度学术]
YU J, RUENGKAJORN K, CRIVOI D G, et al. High Gas Barrier Coating Using Non-toxic Nanosheet Dispersions for Flexible Food Packaging Film[J]. Nature Communications, DOI: 10.1038/s41467- 019-10362-2. [百度学术]
SHEN Z, RAJABI-ABHARI A, OH K, et al. Improving the Barrier Properties of Packaging Paper by Polyvinyl Alcohol Based Polymer Coating—Effect of the Base Paper and Nanoclay[J]. Polymers, DOI: 10.3390/polym13081334. [百度学术]
ZHAN Y, MENG Y, LI Y, et al. Poly(Vinyl Alcohol)/Reduced Graphene Oxide Multilayered Coatings: The Effect of Filler Content on Gas Barrier and Surface Resistivity Properties[J]. Composites Communications, DOI: 10.1016/j.coco.2021.100670. [百度学术]
LIU R, DU J, ZHANG Z, et al. Preparation of Polyacrylic Acid-grafted-acryloyl/Hemicellulose (PAA-g-AH) Hybrid Films with High Oxygen Barrier Performance[J]. Carbohydrate Polymers, 2019, 205: 83-88. [百度学术]
LAZAR S, GARCIA-VALDEZ O, KENNEDY E, et al. Crosslinkable-chitosan-enabled Moisture-resistant Multilayer Gas Barrier Thin Film[J]. Macromolecular Rapid Communications, DOI: 10.1002/marc. 201800853. [百度学术]
SONG Y, TZENG P, GRUNLAR J C. Super Oxygen and Improved Water Vapor Barrier of Polypropylene Film with Polyelectrolyte Multilayer Nanocoatings[J]. Macromolecular Rapid Communications, 2016, 37(12): 963-968. [百度学术]
LI J, VAV EWIJK G , VAN DIJKEN D J, et al. Single-step Application of Polyelectrolyte Complex Films as Oxygen Barrier Coatings[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21844-21853. [百度学术]
CHIANG H C, IVERSON E T, SCHMIEG K, et al. Highly Moisture Resistant Super Gas Barrier Polyelectrolyte Complex Thin Film[J]. Journal of Applied Polymer Science, DOI: 10.1002/app.53473. [百度学术]
LIM J W, LIM W S, LEE M H, et al. Barrier and Structural Properties of Polyethylene Terephthalate Film Coated with Poly(Acrylic Acid)/Montmorillonite Nanocomposites[J]. Packaging Technology and Science, 2021, 34(3): 141-150. [百度学术]
孟庆文, 王金明, 胡帅捷, 等. PVDC涂布薄膜工艺专利检索分析[J]. 塑料助剂, 2023(4): 31-35. [百度学术]
MENG Q W, WANG J M, HU S J, et al. Patent Search and Analysis of PVDC Coating Film Technologies[J]. Plastic Additives, 2023(4): 31-35. [百度学术]
刘海波, 肖瑞厚, 徐 锋, 等. 聚偏氯乙烯水性涂料的专利技术研究进展[J]. 化工生产与技术, 2022, 28(2): 19-23,8. [百度学术]
LIU H B, XIAO R H, XU F, et al. Research Progress on the Patent Technology of Polyvinylidene Chloride Waterborne Coatings[J]. Chemical Production and Technology, 2022,28(2): 19-23,8. [百度学术]
王 芳. PVDC基复合材料纳米SiO2改性及对咸鸭蛋涂膜保鲜效果研究[D]. 南京: 南京农业大学, 2016. [百度学术]
WANG F. Nano-SiO2 Modified PVDC-based Composite Packaging Material and Its Influence on Fresh Preservation Effect of Salted Duck Eggs[D]. Nanjing: Nanjing Agricultural University, 2016. [百度学术]
丁志成.偏氯乙烯-丙烯酸酯乳液聚合及其性能研究[D]. 长春: 长春工业大学, 2019. [百度学术]
DING Z C. Synthesis and Properties of Emulison Copolymerization of Vinylidene Chloride and Acrylate[D]. Changchun: Changchun University of Technology, 2019. [百度学术]
李家伟. 高阻隔聚偏氯乙烯乳液的合成及其性能研究[D]. 长春: 长春工业大学, 2022. [百度学术]
LI J W. Synthesis of High-barrier Polyvinylidene Chloride Emulsion and Its Performance Study[D]. Changchun: Changchun University of Technology, 2022. [百度学术]